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LIST OF SYMBOLS 

a    = inside radius of cylinder 

(a)   = approximate hole diameter in bend specimens 

b    = outside radius of cylinder 

h    = thickness of bend specimens 

I    = logarithmic value of Y-intercept from S-N curve 

%   = number of cycles for fatigue crack initiation 

Kf   = fatigue strength reduction factor 

Kt   = stress concentration factor 

Ktoo  = stress concentration factor for infinite width plate 

P = internal pressure on cylinder 

R = stress ratio between minimum stress and maximum stress 

r = any radius between the inside and outside radius of cylinder 

S = slope of S-N curve 

W = cylindrical wall ratio between outside and inside diameter 

0alt = alternating stress 

aalt = alternating stress times the fatigue strength reduction factor Kf 

amax = maximum stress 

^ax " maximum stress times the fatigue strength reduction factor Kf 

amean =: mean stress 

amean = mean stress times the fatigue strength reduction factor Kf 

arain = minimum stress 

amin = minimum stress times the fatigue strength reduction factor Kf 

atR " tangential residual stress resulting from overstrain or autofrettage 

iv 



Oj-p  = tangential stress resulting from internal pressurization 

ay   = yield strength of material 



INTRODUCTION 

The benefits of autofrettage on fatigue crack propagation of cracks have 

been well documented.^  The reason behind these benefits is the corapressive 

residual stress field on the inside wall of the cylinder after overpressuriza- 

tion has caused plastic deformation from the inside out.  This allows a 

tremendous advantage in retarding crack initiation and propagation in the 

early stages of crack growth, accounting for the dramatic increases in useful 

service life for an autofrettaged cylinder compared to a non-autofrettaged 

cylinder. 

However, because of the principles of equilibrium, the residual stresses 

on the outside surface are tensile in nature.  This may be a cause of concern 

when external flaws such as holes, keyways, and notches are machined on the 

outside surface because of engineering design considerations, especially when 

an additional tensile stress is added on the outside surface from internal 

pressurization.  Depending on the stress concentration effects and the fatigue 

strength reduction factor, this stress situation on the outside wall may take 

a heavy toll on the useful service life of the cylinder.  In this study we 

will examine the effects of threaded holes on the outside surface. 

R-PvATIO 

Figure 1 shows the relationship between the minimum stress and maximum 

stress, called the stress ratio, or the R-ratio.^  In fully reversed loading 

^-Davidson, T. E., Kendall, D. P., and Reiner, A. N., "Residual Stresses in 
Thick-Walled Cylinders Resulting From Mechanically Induced Overstrain," 
Experimental Mechanics, November 1963. 

2Richards, C. W., Engineering Materials Science, Wadsworth Publishing Company, 
Belmont, CA, 1967. 



(Figure la), R = -1, as shown by the complete reversal of sign of the 

amplitude.  Bending stresses in a rotating axle vary in this manner.  Also, 

the mean stress is zero.  When there is a combination of a constant load and 

an alternating load, the mean stress is no longer zero and the value of R may 

increase from -1 to zero (Figure lb), where amin reaches zero.  As R increases 

from zero to 1, amin becomes more tensile (Figure 1c).  It is this last 

combination of loading that corresponds to the loading conditions on the 

outside of an autofrettaged cylinder caused by tensile residual stress and 

pressurization.  This third case will be studied in this report. 

APPARATUS AND PROCEDURE 

The specimen configuration chosen to represent tensile stresses on the 

outside wall of a cylinder was a bending beam specimen one half inch (12.7 ram) 

thick by one inch (25.4 mm) wide, shown in Figure 2.  Approximately 90 

specimens were fabricated from sections of modified 4330 gun steel taken from 

a 155 mm cylinder.  Representative material properties were:  0.1% offset 

yield strength = 160 Ksi (1100 MPa), ultimate tensile strength = 195 Ksi (1345 

MPa), % elongation = 16%, % reduction in area = 50%. 

One half of the specimens were fabricated with a 5/16 inch-24 UNF 

threaded hole and the second half were fabricated with a 6-32 UNC threaded 

hole.  All holes were terminated at the middle, or neutral axis of the 

specimen.  Stresses were calculated by using equations of bending beams in a 

combination of cross-sections approximating those of the test specimens. 

All specimens were tested in a Sonntag SF1U fatigue testing machine with 

a nine inch (22.9 cm) lever arm bending fixture, or the five-to-one multiplier 



fixture and a three inch (7.6 cm) lever arm.  All specimens were fatigued 

until an arbitrary fatigue crack length of 0.050 inch (1.27 mm) on the tensile 

surface was detected and the number of cycles N^ was recorded.  This was 

considered a reasonable upper limit on fatigue crack size for initiation 

because a crack of this size is still small but detectable by optical methods. 

In cases where no crack could be detected for greater than several million 

cycles, these specimens were considered runouts.  The combination of static 

preload and dynamic alternating load allowed for an infinite variety of values 

for R-ratio, but in our case only positive values were used to evaluate the 

stress conditions seen on the outside surface of autofrettaged cylinders 

subject to internal pressurization. 

Figure 3 shows some ranges of stresses on the outer surface of typical 

cylinders for the 100 percent overstrained condition.  This shows residual 

tensile from about 70 Ksi (483 MPa) to about 105 Ksl (724 MPa) and stress 

ranges caused by pressure from about 28 Ksi (193 MPa) to about 60 Ksi (414 

MPa).  The stress figures in parentheses in Figure 3 are the values of 

internal pressure. 

STRESS EQUATIONS 

In order to calculate the final value of stress caused by combination of 

external residual tensile stress and Lame' circumferential stress caused by 

internal pressurization, the following equations were used. 

External residual tensile stress for 100 percent overstrain condition:2 

■'Richards, C. W., Engineering Materials Science, Wadsworth Publishing Company, 
Inc., Belmont, CA, 1967. 



At r = b: 

Pressure stress: 

atR  -£nW     b2 b 
 = --— (1 + --) + (1 - Jin -) (1) 
ay   Wz-1     rz r 

atR  -2£nW 
  = ----- + 1 (2) 
ay    Wz-1 

a2p       b2 

Co -a ;    r 

At r = b: 

2p 

^ -  (WM) W 

The combination of Eqs. (2) and (4) provides the maximum stress on the 

outside surface of the 100 percent overstrained cylinder. 

TEST SCHEDULE 

Figure 4 shows the relationship between minimum stress, mean stress and 

alternating stress for all ranges of positive R-ratio considered.  Also shown 

are the locations on this plot for the cylinders shown in Figure 3.  The 

residual tensile stress on the outside of the cylinder is represented by om^n 

in Figure 4.  The Lame' stress caused by pressurization is represented by 

aalf  Thus, for any particular stress ratio, the appropriate values of amin, 

aalt> ancl araean ^Y be calculated by referring to the graph parameters. 

The test schedule was designed using Figure 4 at varying stress ratio 

levels with stress conditions as severe as the examples shown from Figure 3 or 

more severe conditions in order to obtain a wide range of fatigue crack 



initiation cycles.  Figure 5 shows the test tnatrix used.  The arrows labelled 

% show the direction in which % will be increased. 

STRESS CONCENTRATION FACTORS 

The following stress concentration factors for simple bending of an 

infinite width plate^ with a hole were used to determine Kt for holes in 

bending of finite width plates. 

For (a)/h *  »: 

5+3 v 
Ktoo =  (5) 

3+v 

For v = 0.3 (steel), Ktoo = 1.788. 

For the large threaded hole (5/16 inch-24 UNF), the approximate value 

for the hole size (a) used was 0.3 inch (7.62 ram).  So for (a)/h = 0.6, the 

value of Ktoo was: 

Ktoo = 2.45 (large hole) 

For the small threaded hole (6-32 UNC), an approximate value of (a) = 

0.1278 inch (3.246 mm) was used.  So for (a)/h = 0.2556, the value of Kt was: 

Ktoo = 2.72 (small hole) 

Using these values of Ktoo and (a)/h the following values of Kt for finite 

width plate were found from Peterson. 

Kt = 1.9 (large hole) 

^ = 2.4 (small hole) 

-'Peterson, R. E., Stress Concentration Factors, John Wiley and Sons, New York, 
1974. 



It can be seen that the stress concentration factor for the small hole Is 

greater than that for the large hole, slgalfylng a more serious stress 

concentration as the hole diameter decreases.  However, the worst case 

deteriorates only to Kt = 3 for a hole in transverse bending of a plate.^ 

FATIGUE NOTCH FACTOR 

Lipson and Sheth^ have shown a relationship between fatigue notch factor 

and stress concentration factor for steel and cast iron. From this relation- 

ship the following values for the two hole sizes were calculated: 

Kf = 1.85 (large hole) 

Kf = 2.27 (small hole) 

RESULTS AND DISCUSSION 

Figures 6 and 7 show the S-N ("stress life) curves of alternating stress 

versus number of cycles to crack initiation and the least-squares data fits 

based on the stress concentration factors and fatigue notch factors derived 

above.  Both conditions exhibit an apparent endurance limit at stress levels 

below 20 Ksi (138 MPa).  Note that the large hole specimens allow fatigue 

crack initiation to occur at more than twice the cycles for fatigue crack 

initiation at the many holes under equivalent alternating stress levels. 

Figures 6 and 7 exhibit a spread in the fatigue crack initiation data as 

shown by the funnel lines.  Further analysis showed that this fanning out 

effect can be explained by the changes in stress ratio. 

3Peterson, R. E., Stress Concentration Factors, John Wiley and Sons, New York, 
1974. 

4Lipson, C. and Sheth, N. J., Statistical Design and Analysis of Engineering 
Experiments, McGraw-Hill Book Company, NY, 1973. 



To more fully describe the effects of stress ratio on fatigue crack 

initiation, Figure 8 shows the changes in slope and Y-intercept of the lines 

on log-log graph of the S-N curve in Figures 6 and 7 caused by changes in 

stress ratio.  The lines have a slope, S, which represents the power terra of 

0alt> an(l a Y-intercept, I, which represents the coefficient of Oalt > an^ ITiay 

be expressed as follows: 

&n % = S in aait + I (6) 

As seen in Figure 8, the slope increases from -4.72 at R = 0 to -3.15 at 

R = 0.7, and the value of 1 decreases from 31.7 at R = 0 to 24.3 at R = 0.7. 

Figure 9 shows the effects of stress ratio R on fatigue crack initiation. 

aalt ^s t^6 alternating stress value with Kf taken into consideration.  By 

multiplying the nominal alternating stress by Kf, one may obtain an average 

value of fatigue crack initiation life from this graph.  Please note that for 

lives greater than 12,000 fatigue cycles the graph shows that as the stress 

ratio increases while oait  is kept constant, the number of cycles to initiate 

the fatigue crack decreases, indicating the suppressive effect of increasing 

the R-ratio.  Since the data converges at about 12,000 cycles, this shows that 

the R-ratio has significantly less effect on crack initiation than the change 

in alternating stress in this intermediate cycle range.  The R-ratio effect 

becomes more dominant in the high cycle range.  Insufficient data was 

generated in the low cycle range to determine which has the dominant effect, 

but it appears to be the alternating stress from the trend of the limited data 

available. 



By using an Interactive set of stress coordinates, one can describe the 

fatigue crack initiation in terras of any two stress parameters by aligning the 

stress and scaling them as shown in Figure 10.  This diagram was developed in 

Reference 5. 

Solving Eq. (6) for aa^t by using a root finder technique, one can plot 

the modified Goodman diagram shown in Figure 10 with constant fatigue 

initiation cycle parameters.  This diagram can then be used to determine 

average fatigue initiation life for any stress conditions for positive stress 

ratios, taking into account the fatigue strength reduction factor for the 

external holes studied.  The designer may use the diagram to predict the 

average useful fatigue life of a component with a threaded hole subject to 

positive stress ratios if the value of Kf is known for the hole size. 

CONCLUSIONS 

1. The effect of hole size in fatigue crack initiation is directly 

related to the fatigue notch factor.  The smaller the hole diameter, the lower 

the nuraber of cycles required to initiate a fatigue crack at the hole. 

2. For positive values of stress ratio, an Increase in the R-ratio 

decreases the number of cycles to initiate a fatigue crack while the 

alternating stress is kept constant. 

3. By taking into account the fatigue notch factor, one may predict the 

average initiation life for a range of hole sizes under positive stress ratio 

conditions by using a single modified Goodman diagram with the appropriate 

curves for the material used. 

5Burk, J. D. and Lawrence, F. V., "The Effect of Residual Stresses on Weld 
Fatigue Life," Fracture Control Program Report No. 29, College of 
Engineering, University of Illinois, Urbana, IL, January 1978. 
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OUTER   STRESS   VALUES 
FOR   TYPICAL   CYLINDERS 
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Figure 3.  Range of Stresses on the Outer Surface of Typical Cylinders. 
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